Dans cet article, nous allons aborder la question de Algèbre sur un corps d'un point de vue complet et détaillé. Algèbre sur un corps est un sujet d'une grande pertinence et d'un grand intérêt aujourd'hui, car il a un impact direct sur la vie des gens et sur différents aspects de la société. Tout au long de ce texte, nous analyserons les aspects les plus pertinents liés à Algèbre sur un corps, depuis son origine et son histoire jusqu'à son impact aujourd'hui. De plus, nous explorerons différentes approches et opinions sur Algèbre sur un corps dans le but d’offrir une vision large et enrichissante de ce sujet passionnant.
En mathématiques, et plus précisément en algèbre générale, une algèbre sur un corps commutatif K, ou simplement une K-algèbre, est une structure algébrique telle que :
Une algèbre sur un corps commutatif K est un K-espace vectoriel A muni d'une opération binaire × (c'est-à-dire que le « produit » x × y de deux éléments de A est un élément de A) bilinéaire, ce qui signifie que pour tous vecteurs x, y, z dans A et tous scalaires a, b dans K, les égalités suivantes sont vraies :
Les deux premières égalités traduisent la distributivité de la loi × par rapport à la loi +.
On dit que K est le corps de base de A. L'opérateur binaire est souvent désigné comme la multiplication dans A.
Un morphisme entre deux algèbres A et B sur K est une application f : A → B telle que Deux algèbres A et B sur K sont dites isomorphes s'il existe une bijection de A dans B qui soit un morphisme d'algèbres.
Dans la définition, K peut être un anneau commutatif unitaire, et A un K-module. Alors, A est encore appelée une K-algèbre et on dit que K est l'anneau de base de A.
Une base d'une algèbre A sur un corps K est une base de A pour sa structure d'espace vectoriel[2].
Si est une base de A, il existe alors une unique famille d'éléments du corps K tels que :
Pour i et j fixés, les coefficients sont nuls sauf un nombre fini d'entre eux. On dit que sont les constantes de structure[2] de l'algèbre A par rapport à la base a, et que les relations constituent la table de multiplication de l'algèbre A pour la base a[2].
Soit un ouvert de . L'ensemble des fonctions analytiques dans est une -algèbre.
L'ensemble des nombres complexes est une ℝ-algèbre associative, unifère et commutative de dimension 2. Une base de l'algèbre ℂ est constituée des éléments 1 et i. La table de multiplication est constituée des relations :
1 | i | |
---|---|---|
1 | 1 × 1 = 1 | 1 × i = i |
i | i × 1 = i | i × i = –1 |
Tout corps fini est une algèbre associative, unifère et commutative de dimension n sur son sous-corps premier (Fp = ℤ/pℤ), donc son ordre est pn.
Par exemple le corps fini F4 est une algèbre de dimension 2 sur le corps F2 = ℤ/2ℤ dont la table de multiplication dans une base (1, a) est :
1 | a | |
---|---|---|
1 | 1 × 1 = 1 | 1 × a = a |
a | a × 1 = a | a × a = 1 + a |
On peut démontrer que toute algèbre unifère de dimension 2 sur un corps est associative et commutative[3]. Sa table de multiplication dans une base (1, x) est de la forme :
1 | x | |
---|---|---|
1 | 1 × 1 = 1 | 1 × x = x |
x | x × 1 = x | x × x = a1 + bx |
Une telle algèbre est appelée algèbre quadratique de type (a, b) (le type pouvant dépendre de la base choisie).
Par exemple : ℂ est une ℝ-algèbre quadratique de type (–1, 0) pour la base (1, i) et F4 est une F2-algèbre quadratique de type (1, 1).
L'ensemble des matrices carrées d'ordre n ≥ 2 à coefficients réels est une ℝ-algèbre associative, unifère et non commutative de dimension n2.
L'ensemble des quaternions est une ℝ-algèbre associative, unifère et non commutative de dimension 4.
1 | i | j | k | |
---|---|---|---|---|
1 | 1 × 1 = 1 | 1 × i = i | 1 × j = j | 1 × k = k |
i | i × 1 = i | i × i = –1 | i × j = k | i × k = –j |
j | j × 1 = j | j × i = –k | j × j = –1 | j × k = i |
k | k × 1 = k | k × i = j | k × j = –i | k × k = –1 |
L'ensemble des biquaternions est une ℂ-algèbre associative, unifère et non commutative de dimension 4 qui est isomorphe à l'algèbre des matrices carrées d'ordre 2 à coefficients complexes.
L'ensemble des octonions est une ℝ-algèbre unifère non associative et non commutative de dimension 8.
L'espace euclidien ℝ3 muni du produit vectoriel, , est une ℝ-algèbre non associative, non unifère et non commutative (elle est anti-commutative) de dimension 3.
La table de multiplication dans une base orthonormale directe est :
L'ensemble des matrices carrées d'ordre n ≥ 2 à coefficients réels, muni du crochet de Lie : , est une ℝ-algèbre non associative, non unifère et non commutative de dimension n2. Elle est anti-commutative et possède des propriétés qui font de l'algèbre une algèbre de Lie.
La ℝ-algèbre des quaternions est un ℂ-espace vectoriel, mais n'est pas une ℂ-algèbre car la multiplication × n'est pas ℂ-bilinéaire : i·(j × k) ≠ j × (i·k).