Dans le monde d'aujourd'hui, Orbite terrestre est devenu un sujet d'intérêt croissant pour un large éventail de personnes. Avec ses nombreuses facettes et son impact sur divers domaines de la vie, Orbite terrestre a attiré l'attention de nombreuses personnes, des experts dans le domaine à ceux qui commencent tout juste à explorer ses implications. Que Orbite terrestre fasse référence à une personne, un sujet, une date ou tout autre élément, sa pertinence dans la société moderne est indéniable. Dans cet article, nous explorerons en profondeur les différentes dimensions de Orbite terrestre, en analysant son importance, ses défis et ses implications possibles pour le futur.
Une orbite terrestre est l'orbite suivie par un objet circulant autour de la Terre. Depuis le début de l'ère spatiale (1957) plusieurs milliers de satellites ont été placés en orbite autour de notre planète. Les orbites des engins spatiaux ont des caractéristiques différentes dans le but de répondre aux objectifs de leur mission. Des millions de débris spatiaux de toute taille résultant de l'activité spatiale sont également en orbite autour de la Terre. Outre les objets artificiels, un objet naturel, la Lune, est en orbite autour de la Terre.
L'orbite elliptique d'un satellite autour de la Terre est décrite au moyen de deux plans — le plan de l'orbite (plan orbital) et le plan équatorial (le plan qui passe par l'équateur de la Terre) — et de six paramètres (les éléments) : le demi-grand axe, l'excentricité, l'inclinaison, la longitude du nœud ascendant, l'argument du périgée et la position de l'objet sur son orbite. Deux de ces paramètres - excentricité et demi-grand axe - définissent la trajectoire dans un plan, trois autres - inclinaison, longitude du nœud ascendant et argument du péricentre - définissent l'orientation du plan dans l'espace et le dernier - instant de passage au péricentre - définit la position de l'objet.
Le plan de référence ou plan référentiel est pour les orbites terrestres le plan passant par l'équateur. Le plan de référence et le plan de l'orbite sont ainsi deux plans sécants. Leur intersection est une droite appelée ligne des nœuds. L'orbite coupe le plan de référence en deux points, appelés nœuds. Le nœud ascendant est celui par lequel le corps passe en trajectoire ascendante ; l'autre est le nœud descendant.
Le passage entre le plan orbital et le plan de référence est décrit par trois éléments qui correspondent à des angles d'Euler[1] :
Le sixième paramètre est la position du corps orbitant sur son orbite à un instant donné. Elle est nécessaire pour pouvoir définir celle-ci dans le futur. Elle peut être exprimée de plusieurs manières :
Les paramètres orbitaux des objets en orbite terrestre sont représentés de manière standard sous la forme de Paramètres orbitaux à deux lignes (en anglais Two-Line Elements ou TLE). Le NORAD et la NASA maintiennent un catalogue de ces paramètres non seulement pour les satellites artificiels, mais également pour les débris spatiaux d'une taille supérieure à 10 centimètres en orbite basse et 1 mètre en orbite géostationnaire (sous cette taille les débris ne peuvent pas être suivis de manière individuelle par les radars). Les données contenues dans ce catalogue permettent de calculer à tout instant la position des objets en orbite. À cause des nombreuses perturbations dont ils font l'objet (influences de l'attraction de la Lune et du Soleil, freinage atmosphérique, vent solaire, pression photonique… mais également manœuvres orbitales , ces paramètres doivent cependant être régulièrement mis à jour et ne sont valables que pour une période limitée.
Les paramètres gérés dans le catalogue sont les suivants :
Le catalogue listait mi 2019 environ 44000 objets dont 8558 satellites lancés depuis 1957[2]. 17 480 font l'objet d'un suivi régulier[3]. En janvier 2019 l'Agence spatiale européenne estimait que l'organisation américaine était en mesure de suivre 34 000 débris spatiaux [4]. Des millions de débris de plus petite taille ne sont pas répertoriés.
Dans ce catalogue chaque objet en orbite a deux identifiants attribué au lancement du satellite ou lors de l'apparition d'un nouveau débris : l'identifiant COSPAR et l'identifiant NORAD. L'identifiant COSPAR est un identifiant international qui est attribué à tout objet placé en orbite ayant une trajectoire indépendante. Sa structure est la suivante : année de lancement, n°ordre du lancement, lettre permettant de distinguer les différents satellites lancés. 2021-05C désigne ainsi un satellite placé en orbite en 2021 lors du cinquième lancement de l'année qui comportait au moins trois satellites (puisqu'il lui est attribué la lettre C). L'identifiant NORAD est un numéro d'ordre attribué par l'organisation américaine au fur et à mesure des lancements ou des détections de débris spatiaux.
La période de révolution (période orbitale) d'un satellite autour de la Terre est la durée mise par accomplir une révolution complète autour de la Terre. Sa valeur s'affaiblit avec la distance entre la Terre et le satellite. Elle passe de 90 minutes sur une orbite basse à 200 kilomètres d'altitude, à 23 heures 56 minutes sur une orbite géostationnaire. Sur cette dernière orbite, elle coïncide avec la période de révolution de la Terre. Le satellite reste de ce fait en permanence au-dessus de la même région terrestre. La période orbitale de la Lune est de 27,27 jours.
La vitesse orbitale autour de la Terre est d'autant plus faible que l'orbite amène le satellite à s'éloigner à une distance importante de la Terre. Sur une orbite circulaire terrestre, cette vitesse est de 7,9 km/s à 200 kilomètres et 3,1 km/s au niveau de l'orbite géostationnaire. La Lune circule à une vitesse orbitale qui oscille entre 0,97 et 1,08 km/s car elle est légèrement elliptique. En effet lorsque l'orbite est elliptique, la vitesse varie tout au long de l'orbite : elle atteint son maximum au périgée et son minimum à l'apogée. Ainsi, un satellite placé sur une orbite de Molnia dont le périgée se situe à 500 kilomètres de la surface de la Terre et l'apogée à 39 900 kilomètres voit sa vitesse passer de 10 km/s à proximité de la Terre à 1,5 km/s à son apogée.
Une orbite inclinée est une orbite inclinée par rapport au plan équatorial.
Lorsque le satellite tourne autour de la Terre avec un mouvement de rotation identique à celui de la Terre (dans le sens inverse des aiguilles d'une montre lorsqu'on regarde depuis le pôle nord), son orbite est dite prograde. La très grande des majorités des satellites sont placés sur une orbite prograde car cela permet de bénéficier de la vitesse de rotation de la Terre (0,46 km/s à l'équateur). Parmi les exceptions figurent les satellites israéliens qui ne peuvent être lancés vers l'ouest (soit le sens de la rotation de la Terre) car le lanceur survolerait des terres habitées. Ils circulent sur une orbite rétrograde.
Pour qu'un véhicule spatial se place sur une orbite terrestre, il est nécessaire de lui communiquer une vitesse minimale. Cette vitesse de satellisation minimale est d'environ 7,9 km/s pour un satellite sur une orbite circulaire à 200 kilomètres d'altitude (il s'agit d'une vitesse horizontale, un objet lancé verticalement à cette vitesse ou à une vitesse supérieure retomberait sur Terre).
Si la vitesse horizontale est inférieure à 7,9 km/s l'engin décrit une parabole plus ou moins longue selon la vitesse avant de revenir sur Terre. Si la vitesse est supérieure à la vitesse de libération (11,2 km/s soit 40 320 km/h) sa trajectoire décrit une hyperbole et il quitte l'orbite terrestre pour se placer une orbite héliocentrique (autour du Soleil).
Altitude | Durée de vie |
---|---|
200 km | Quelques jours |
250 km | ~60 jours |
300 km | ~220 jours |
500 km | Quelques années |
1000 km | Plusieurs siècles (indicatif) |
1500 km | 10 000 ans (indicatif) |
L'orbite d'un satellite autour de la Terre n'est pas stable. Elle subit des forces qui progressivement la modifient. En particulier sur l'orbite basse terrestre, l'atmosphère résiduelle, bien que très ténue, agit sur le véhicule spatial en générant une force aérodynamique comprenant deux composantes : la portance, perpendiculaire au vecteur vitesse, dont la valeur est négligeable jusqu'à ce que les couches denses de l'atmosphère soient atteintes (à une altitude d'environ 200 km et en dessous) et la traînée qui vient diminuer la vitesse et entraine ainsi une diminution de l'altitude. La valeur de la trainée s'accroit lorsque l'altitude diminue car l'atmosphère se densifie. Lorsque l'activité solaire est plus intense la densité de l'atmosphère en haute altitude s'accroit ce qui augmente la trainée. Enfin, la trainée dépend également du coefficient balistique de l'engin spatial c'est-à-dire du rapport entre sa section telle qu'elle se présente dans le sens du déplacement et sa masse. Du fait de cette force, un engin spatial circulant à une altitude de 200 kilomètres ne restera en orbite que quelques jours avant de pénétrer dans les couches épaisses de l'atmosphère et d'être détruit (ou d'atterrir s'il a été conçu pour survivre aux hautes températures). S'il circule à une altitude de 1500 kilomètres, cet événement ne se produira qu'au bout d'environ 10 000 ans[5].
Lorsque l'altitude du satellite le fait pénétrer dans les couches plus denses de l'atmosphère, la chaleur produite par la trainée, du fait de sa vitesse de l'ordre de 8 km/s, atteint plusieurs milliers de degrés. Si l'engin spatial n'a pas été conçu pour survivre à sa rentrée atmosphérique, il brûle tout en se brisant en plusieurs morceaux dont certains peuvent atteindre le sol. À cause de la traînée atmosphérique, l'altitude la plus basse au-dessus de la Terre à laquelle un objet en orbite circulaire peut effectuer au moins un tour complet sans propulsion est d'environ 150 km tandis que le plus faible périgée d'une orbite elliptique est d'environ 90 km.
La trace au sol d'un satellite artificiel est une ligne imaginaire constituée par l'ensemble des points situés sur une verticale qui passe par le centre de la Terre et le satellite. La trace permet de déterminer les lieux de visibilité du satellite depuis le sol, et, à l'inverse, de déterminer les portions de la surface couverts par le satellite. Ses caractéristiques sont déterminées par les paramètres de l'orbite. Les objectifs de la mission remplie par le satellite, la position des stations terriennes communiquant avec le satellite contribuent à fixer la forme de la trace au sol et donc en retour les paramètres de l'orbite retenus.
Type orbite | Altitude au-dessus de la surface | Distance du centre de la Terre | Vitesse orbitale | Période orbitale | Energie orbitale |
---|---|---|---|---|---|
Surface de la Terre (pour référence, ce n'est pas une orbite) | 0 km | 6378 km | 465 m/s (1674 km/h) | 23 h 56 min 4 s 9 | -62,6 Mj/kg |
Orbite au niveau de la surface (théorique) | 0 km | 6378 km | 7,9 km/s (28 440 km/h) | 1 h 24 min 18 s | -31,2 Mj/kg |
Orbite basse | 200 à 2000 km km | 6 600 à 8 400 km | 7,8 à 6,9 km/s | 1 h 29 à 2 h 8 | -29,8 Mj/kg |
Orbite géostationnaire | 35 786 km | 42 000 km | 3,1 km/s | 23 h 56 min 4 s 9 | -4,6 Mj/kg |
Orbite de la Lune | 357 000 - 399 000 km | 363 000 - 406 000 km | 0,97-1,08 km/s | 27,27 jours | -0,5 Mj/kg |
Orbite de Molnia | 500–39 900 km | 6 900–46 300 km | 0,97-1,08 km/s | 11 h 58 | -4,7 Mj/kg |