Grand dodécaèdre

Dans l'article d'aujourd'hui, nous allons explorer différents aspects liés à Grand dodécaèdre. De son origine et de son évolution, à ses implications et applications possibles aujourd'hui. Tout au long de ce voyage, nous analyserons différentes approches et perspectives qui nous permettront de mieux comprendre le rôle que Grand dodécaèdre a joué au fil du temps et comment il continue d'impacter divers domaines de la société. Des aspects historiques et culturels à sa pertinence dans le panorama actuel, nous aborderons un large éventail de sujets pour comprendre l'importance et la signification de Grand dodécaèdre dans le monde contemporain. Rejoignez-nous dans ce voyage de découverte et d'enquête sur Grand dodécaèdre et découvrez son univers fascinant dans une perspective multidisciplinaire.

Régulier,    le   “grand   dodécaèdre
de  Kepler‑Poinsot  n’est  pas  convexe.
Cette  projection‑ci  montre  six  faces
sur  douze  du  solide.   Chaque  face
n’est  jamais  visible  qu’en  partie.
Grand dodécaèdre
Description de l'image Great dodecahedron.png.
Description de l'image GreatDodecahedron.gif.
Faces Arêtes Sommets
12 pentagones 30 12 de degré 20{5}
Type Solide de Kepler-Poinsot
Caractéristique 6
Propriétés régulier et non convexe
Groupe de symétrie Ih
Dual Petit dodécaèdre étoilé

En géométrie,  le grand dodécaèdre est l’un des solides de Kepler‑Poinsot,  autrement dit l’un des quatre polyèdres réguliers et non convexes.  Ses douze faces sont des pentagones réguliers convexes de même taille.  Chaque face en coupe cinq,  selon un pentagone régulier étoilé.  Les douze sommets du solide sont communs chacun à cinq faces,  et à cinq de ses trente arêtes.

Arêtes et sommets du solide sont ceux de son enveloppe convexe :  un icosaèdre de Platon.  Le solide partage aussi avec son enveloppe les isométries qui les laissent invariants,  appelées leurs symétries.  Ce sont aussi les symétries du dual de l’enveloppe,  un dodécaèdre régulier convexe,  dont notre solide est le deuxième étoilement.

Cette forme a été à la base du puzzle de type Rubik's Cube nommé l’étoile d'Alexandre.

Si le grand dodécaèdre est considéré comme une surface géométrique proprement intersectée, il possède la même topologie qu'un triaki-icosaèdre à pyramides concaves plutôt qu'à pyramides convexes[1].

Comme une stellation

Il peut aussi être construit comme la deuxième des trois stellations du dodécaèdre, et référencé comme le modèle de Wenninger  (en).

Références

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Great dodecahedron » (voir la liste des auteurs).
  1. Robert Ferréol, « Grand dodécaèdre », sur Encyclopédie des formes mathématiques remarquables

Voir aussi

Sur les autres projets Wikimedia :