Dans le monde d'aujourd'hui, Mesure de Lebesgue est devenu un sujet très pertinent pour des millions de personnes à travers le monde. L'intérêt pour Mesure de Lebesgue a considérablement augmenté ces dernières années, grâce à son impact direct sur la vie quotidienne des gens. Que ce soit sur le plan social, politique, économique ou personnel, Mesure de Lebesgue a retenu l'attention des experts, des dirigeants et des citoyens ordinaires. Il est évident que Mesure de Lebesgue a généré un débat intense et passionné, avec des opinions partagées et des positions fermes. Dans cet article, nous explorerons en profondeur le sujet de Mesure de Lebesgue, en analysant différentes perspectives, recherches et témoignages qui nous permettront de mieux comprendre son importance et son impact sur la société actuelle.
La mesure de Lebesgue est une mesure qui étend le concept intuitif de volume[1] à une très large classe de parties de l'espace. Comme l'a immédiatement perçu son inventeur, Henri Lebesgue, elle permet de bâtir une théorie de l'intégration très performante et fondamentale en analyse moderne : la théorie de l'intégrale de Lebesgue.
Plusieurs constructions bien différentes de la mesure de Lebesgue sont connues. Chacune d'entre elles peut naturellement être prise pour définition ; dans le cadre d'un article où il faut toutes les évoquer, il est prudent de fournir en ouverture une définition plus unificatrice. Celle-ci, grosso modo, caractérise la mesure de Lebesgue comme la « meilleure »[2] mesure donnant les valeurs auxquelles on s'attend sur les solides usuels — la considération des parallélépipèdes rectangles suffisant à conclure, et même les seuls parallélépipèdes aux côtés parallèles aux axes. Dans le théorème d'existence et d'unicité donné ci-dessous[3], l'unicité est relativement facile alors que l'existence est la partie substantielle de la preuve : la difficulté est bien de construire la mesure souhaitée.
Dans l'énoncé qui suit, on entend par « pavés » les produits cartésiens d'intervalles bornés, c'est-à-dire les ensembles de la forme I1 × I2 × ... × In, où les Ii sont des intervalles de ℝ qui peuvent être fermés, ouverts ou semi-ouverts.
Théorème et définition — Il existe une plus petite mesure[4] définie sur une tribu de ℝn qui soit complète et coïncide sur les pavés avec leur volume (c'est-à-dire le produit des longueurs de leurs côtés).
Cette mesure est appelée la mesure de Lebesgue et sa tribu de définition la tribu de Lebesgue.
Complément — La mesure de Lebesgue est la mesure complétée de sa restriction à la tribu des boréliens.
Cette restriction aux boréliens de la mesure de Lebesgue est parfois dénommée mesure de Borel-Lebesgue.
On notera λ n la mesure de Lebesgue et la tribu de Lebesgue. Les éléments de cette tribu sont dits ensembles Lebesgue-mesurables ; en l'absence de référence à une tribu spécifique, c'est généralement ce qu'on entend quand on parle de « partie mesurable » de ℝ ou d'un espace à dimensions. La « mesure de Borel-Lebesgue » est le plus souvent appelée mesure de Lebesgue — ce n'est pas très gênant parce qu'une mesure et sa complétée partagent bon nombre de caractéristiques et notamment ont les mêmes espaces de fonctions intégrables. Le lecteur rencontrant une allusion à la « mesure de Lebesgue » restera tout de même sur ses gardes, notamment en théorie des mesures produits et des intégrales multiples où les énoncés peuvent être légèrement différents pour l'une et l'autre de ses variantes[5].
Comme indiqué plus bas, la mesure de Lebesgue est invariante sous toute isométrie euclidienne de ℝn. Ceci justifie la validité de la définition qui suit :
Définition — On appelle mesure de Lebesgue sur un espace euclidien E la mesure image de la mesure de Lebesgue sur ℝn par n'importe quelle isométrie de ℝn dans E.
Enfin la terminologie « mesure euclidienne » est aussi utilisée pour sa restriction aux parties mesurables :
Définition — Soit A une partie Lebesgue-mesurable d'un espace euclidien E. On appelle mesure de Lebesgue sur A la restriction à A de la mesure de Lebesgue de E.
Prouver l'existence dans le théorème utilisé ici comme définition est un travail substantiel : il s'agit de construire la mesure. On peut distinguer trois familles de constructions[6] :
Dans tous les cas, la construction repose sur la définition de concepts de mesure intérieure et mesure extérieure, ou d'intégrale inférieure et intégrale supérieure. Ces fonctionnelles sont définies sur toutes les parties de ℝn (pour les mesures) ou toutes les fonctions positives sur ℝn (pour les intégrales), mais peuvent prendre deux valeurs différentes. En se restreignant aux ensembles (ou fonctions) où elles coïncident, on constate avoir construit une riche théorie de la mesure (ou de l'intégration).