Énergie pneumatique

« Pneumatics » (Cyclopaedia, 1728) Avec un pneumètre, vous mesurez la pression de l'air, sur la photo un pneumètre à main pour mesurer la pression de l'air dans les pneus de vélo.

L'énergie pneumatique est l'énergie emmagasinée dans un gaz sous forme mécanique du fait qu'il est comprimé. Elle est exploitée dans un système pneumatique.

Dans un système pneumatique, le gaz comprimé est utilisé comme moyen de transport et de stockage d’énergie. De production facile, le système pneumatique présente un certain nombre d’avantages.

Comme un système hydraulique, un système pneumatique est fondé sur une différence de pressions entre deux zones, qui crée une force, puis un mouvement. Mais un système hydraulique utilise un fluide non compressible, un liquide, alors qu'un système pneumatique s'appuie sur un fluide compressible, un gaz. Un système hydraulique comprend souvent un système pneumatique pour un stockage d'énergie, au moins temporaire, le gaz étant utilisé à la manière d'un ressort.

Choix du gaz

L'air est souvent utilisé, sauf quand des contraintes diverses conduisent à choisir d'autres gaz :

Le cas particulier de l'usage de l'air est traité dans l'article « Air comprimé ».

Principes de mise en œuvre

Il existe de nombreuses formes de pompes ou moteurs) classées en deux grandes familles : les pompes/moteurs volumétriques, où un organe (piston ou assimilé) fait varier le volume d'une chambre, et les turbines, qui jouent sur un effet dynamique, comme la force centrifuge.

Un système pneumatique repose sur une différence de pressions entre deux zones, différence de pression qui crée une force mécanique. En général la pression la plus forte se situe à l'intérieur de la chambre, et la pression la plus faible à l'extérieur — souvent la pression atmosphérique.

La force (F) résultant de la différence de pression entre les deux zones est proportionnelle à la différence de pression (P1 - P2) et à la surface (S) sur laquelle elle s'exerce : F = (P1 - P2) * S

Dans le cas le plus habituel, on utilise une pompe/moteur volumétrique. La chambre est alors fermée par une partie déformable et/ou mobile, que l'on nomme « piston », le déplacement du piston modifie le volume de la chambre.

Dans la plupart des cas, le piston se déplace en translation dans un cylindre, mais il existe une grande variété de pompes volumétriques.

Les armes peuvent souvent être assimilées à des moteurs pneumatiques. Le projectile joue le rôle de piston, animé d'une très grande vitesse linéaire, combinée à une rotation servant à le stabiliser sur sa trajectoire.

Enfin, le piston peut être déformable (ballon, diaphragme) voire être liquide (baromètre à mercure, bulle).

Bases de la modélisation physique

La modélisation des systèmes pneumatiques se fait en grande partie dans le cadre de la thermodynamique. Les systèmes ayant de nombreux paramètres de description, la modélisation est souvent délicate.

La loi des gaz parfaits, qui fait intervenir la pression, le volume, la quantité de matière gazeuse et la température, est utilisée pour décrire les situations statiques à faibles pressions. D’autres lois plus complexes sont utilisées lorsque les pressions deviennent importantes ou que les gaz ont un comportement qui s'écarte trop du modèle du gaz parfait.

D'autre part, il faut tenir compte des effets dynamiques dus aux mouvements du gaz étudiés par l'aérodynamique et qui peuvent mener à des résonances, c'est-à-dire des sons.

Les différences de température vont entraîner des transferts thermiques, qui vont également modifier le comportement mécanique du système.

Selon les conditions de température et de pression, les constituants physico-chimiques peuvent changer d'état, entre gaz, liquide, voire solide, ce qui change notamment la densité volumique, la compressibilité et l'énergie disponible. Des réactions chimiques peuvent également se produire, modifiant la composition du système.

Pour réussir à comprendre les interactions entre tous les paramètres, on essaye de se ramener à des situations simples, en gardant certains paramètres constants. Par exemple :

Cependant, dans la réalité, les transformations sont polytropiques. Cela veut dire qu'une partie de l'énergie (travail) est soustraite ou augmentée (notamment dans le cas de la détente) par les échanges thermiques avec l'environnement extérieur.

En outre, on peut aussi essayer de faire les transformations lentement afin de rester proche des équilibres :

Estimation de l'énergie

Cette section ne cite pas suffisamment ses sources (mai 2016). Pour l'améliorer, ajoutez des références de qualité et vérifiables (comment faire ?) ou le modèle {{Référence nécessaire}} sur les passages nécessitant une source.

Première méthode d'estimation

Un réservoir de volume V {\displaystyle \displaystyle V} contenant de l'air à la pression P a {\displaystyle \displaystyle Pa} qu'on laisse se détendre contient effectivement de l'énergie mécanique qu'on peut récupérer.

Dans le cas d'une détente adiabatique réversible, sans perte (efficacité énergétique égale à 100 %), l'énergie délivrée (en J/kg d'air) sera :

W = − γ γ − 1 ∗ Z ∗ r ∗ T a ∗ {\displaystyle W=-{\frac {\gamma }{\gamma -1}}*Z*r*Ta*\left}

avec :

γ {\displaystyle \gamma } = C p / C v {\displaystyle Cp/Cv} = 1,4 pour de l'air Z {\displaystyle \displaystyle Z} = coefficient de compressibilité = 1 r {\displaystyle \displaystyle r} = constante du gaz = R / M {\displaystyle R/M} où R {\displaystyle \displaystyle R} = 8,314 J/mole.K et M {\displaystyle \displaystyle M} est la masse molaire en kg/mole (= 0,028 pour de l'air) T a {\displaystyle \displaystyle Ta} = température absolue (en K) à l'aspiration. Si t = 27 °C alors Ta = 300 K.

Quelques valeurs de W {\displaystyle \displaystyle W} et ρ {\displaystyle \displaystyle \rho } (la masse volumique de l'air à la pression considérée) :