Utilisateur:Dfeldmann/brouillon12

Dans l'article d'aujourd'hui, nous allons parler de Utilisateur:Dfeldmann/brouillon12, un sujet qui a suscité un grand intérêt ces derniers temps. Utilisateur:Dfeldmann/brouillon12 est quelque chose qui affecte de nombreuses personnes dans différents aspects de leur vie, que ce soit au niveau personnel, professionnel ou même social. C’est un sujet qui mérite notre attention et notre analyse, car son impact peut être significatif dans notre vie quotidienne. Tout au long de cet article, nous explorerons différents aspects de Utilisateur:Dfeldmann/brouillon12, de son origine à ses conséquences, en passant par ses solutions possibles ou les moyens d'y remédier. Nous espérons que cet article vous donnera un aperçu plus approfondi de Utilisateur:Dfeldmann/brouillon12 et vous aidera à mieux comprendre sa pertinence dans la société actuelle.

⇐ brouillon précédent Ceci est un brouillon de travail, prière de ne pas le modifier ⇒ brouillon suivant


In general topology, the pseudo-arc is the simplest nondegenerate hereditarily indecomposable continuum. The pseudo-arc is an arc-like homogeneous continuum, and played a central role in the classification of homogeneous planar continua. R. H. Bing proved that, in a certain well-defined sense, most continua in Modèle:Tmath n ≥ 2, are homeomorphic to the pseudo-arc.

History

In 1920, Bronisław Knaster and Kazimierz Kuratowski asked whether a nondegenerate homogeneous continuum in the Euclidean plane Modèle:Tmath must be a Jordan curve. In 1921, Stefan Mazurkiewicz asked whether a nondegenerate continuum in Modèle:Tmath that is homeomorphic to each of its nondegenerate subcontinua must be an arc. In 1922, Knaster discovered the first example of a hereditarily indecomposable continuum K, later named the pseudo-arc, giving a negative answer to a Mazurkiewicz question. In 1948, R. H. Bing proved that Knaster's continuum is homogeneous, i.e. for any two of its points there is a homeomorphism taking one to the other. Yet also in 1948, Edwin Moise showed that Knaster's continuum is homeomorphic to each of its non-degenerate subcontinua. Due to its resemblance to the fundamental property of the arc, namely, being homeomorphic to all its nondegenerate subcontinua, Moise called his example M a pseudo-arc.[note 1] Bing's construction is a modification of Moise's construction of M, which he had first heard described in a lecture. In 1951, Bing proved that all hereditarily indecomposable arc-like continua are homeomorphic — this implies that Knaster's K, Moise's M, and Bing's B are all homeomorphic. Bing also proved that the pseudo-arc is typical among the continua in a Euclidean space of dimension at least 2 or an infinite-dimensional separable Hilbert space.[note 2] Bing and F. Burton Jones constructed a decomposable planar continuum that admits an open map onto the circle, with each point preimage homeomorphic to the pseudo-arc, called the circle of pseudo-arcs. Bing and Jones also showed that it is homogeneous. In 2016 Logan Hoehn and Lex Oversteegen classified all planar homogeneous continua, up to a homeomorphism, as the circle, pseudo-arc and circle of pseudo-arcs. In 2019 Hoehn and Oversteegen showed that the pseudo-arc is topologically the only, other than the arc, hereditarily equivalent planar continuum, thus providing a complete solution to the planar case of Mazurkiewicz's problem from 1921.

Construction

The following construction of the pseudo-arc follows Modèle:Harvtxt.

Chains

At the heart of the definition of the pseudo-arc is the concept of a chain, which is defined as follows:

A chain is a finite collection of open sets in a metric space such that if and only if The elements of a chain are called its links, and a chain is called an ε-chain if each of its links has diameter less than ε.

While being the simplest of the type of spaces listed above, the pseudo-arc is actually very complex. The concept of a chain being crooked (defined below) is what endows the pseudo-arc with its complexity. Informally, it requires a chain to follow a certain recursive zig-zag pattern in another chain. To 'move' from the m-th link of the larger chain to the n-th, the smaller chain must first move in a crooked manner from the m-th link to the (n − 1)-th link, then in a crooked manner to the (m + 1)-th link, and then finally to the n-th link.

More formally:

Let and be chains such that
  1. each link of is a subset of a link of , and
  2. for any indices i, j, m, n with , , and , there exist indices and with (or ) and and
Then is crooked in

Pseudo-arc

For any collection C of sets, let C* denote the union of all of the elements of C. That is, let

The pseudo-arc is defined as follows:

Let p, q be distinct points in the plane and be a sequence of chains in the plane such that for each i,
  1. the first link of contains p and the last link contains q,
  2. the chain is a -chain,
  3. the closure of each link of is a subset of some link of , and
  4. the chain is crooked in .
Let
Then P is a pseudo-arc.

Notes


nb erreurs: 1
Erreur. Modèle:Notes. Paramètre non valide « notes » valeur: «  »,

  1. Modèle:Harvtxt later showed that a decomposable continuum homeomorphic to all its nondegenerate subcontinua must be an arc.
  2. The history of the discovery of the pseudo-arc is described in Modèle:Harvtxt, pp. 228–229.

References

  • « {{{1}}} »
  • « {{{1}}} »
  • « {{{1}}} »
  • « {{{1}}} »
  • « {{{1}}} »
  • « {{{1}}} »
  • « {{{1}}} »
  • « {{{1}}} »
  • « {{{1}}} »
  • « {{{1}}} »
  • « {{{1}}} »
  • « {{{1}}} »
  • « {{{1}}} »
  • « {{{1}}} »
  • « {{{1}}} »